
 Procedia Computer Science 55 (2015) 523 – 528

Available online at www.sciencedirect.com

1877-0509 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ITQM 2015
doi: 10.1016/j.procs.2015.07.030

ScienceDirect

Information Technology and Quantitative Management (ITQM 2015)

Database versioning 2.0, a transparent SQL approach used in
Quantitative Management and Decision Making

Cosmin Cioranua, Marius Ciocab,1, Carmen Novacb

aExecutive Unit for Higher Education, Research, Development and Innovation Funding, Bucharest, Romania
b”Lucian Blaga” University of Sibiu, Sibiu, Romania

Abstract

Managerial decisions are based on accurate information and in today’s time raw data is produced even with a
stroke of a key. Regardless of the data creating process one needs to know how the information was extracted
and which pool of data was used. One important factor is time therefore we need to structure it in layers of data
history in such a way that it can be analyzed, (post)process, in order to be able to retrieve valuable information.
The simplest way is to use a Database Management System (DBMS), but even with such a management system
we face the issue of making it a self-contained database on each version of data added. Our proposed system,
a continuation of previous work, aims toward creating a database versioning system which keeps the natural
dependency between data on each internal revision, a basis of security and alteration control mechanism, trend
analytics, without sacrificing(within acceptable levels) speed, flexibility and the cost of implementation be kept
as minimal as possible.

c© 2015 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of ITQM2015.

Keywords: DBMS, SQL, Database Logical Version Control, Decision Making;

1. Introduction

Managerial decisions are based on accurate information, but in today’s time raw data is produced even
with a stroke of a key. No matter how the raw data was created (automated or manual systems) one needs
to know how the information was extracted and which pool of data it was used. One important property
of data is time, but because we are living in a fast and ever growing space, an informational space, we face
the need to slice it and restructure it in historic layers[7]. If process requirements do not ask explicitly for
historic layer mechanism(tracking information in contextual blocks) in long lived databases [10], produced
by certain algorithm or advanced applications such as CAD/CAM, Geographic Information System (GIS)
[10][5][6], simple but not simplistic architectural design of tracking modification is enough. Most radical
decisions are based on informational trends therefore it makes sense to create and invest in such storage
engine/architecture. One simple and yet robust approach in achieving historic layering is a file system,

∗Corresponding author. Tel.: +4-021-302-3899.
E-mail address: marius.cioca@ulbsibiu.ro.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ITQM 2015

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.07.030&domain=pdf

524 Cosmin Cioranu et al. / Procedia Computer Science 55 (2015) 523 – 528

but in most designs it lacks the necessary flexibility, partitioning of data and/or security. Some of the
issues can be addressed by using control version systems (such as Concurrent Versions System - CVS,
Subversion - SVN) but it also lacks the necessary granularity in security and data access. Another way
is to lean towards a Database Management System (DBMS) which allows all the above requirements
in terms of data access, data partitioning it up to the primitive slices, security and most of needed
granularity[11], but here we yet another issue, we moved the issue of data storing structure but not the
issue of historic layering. Systems based on Common European Research Information Format(CERIF)
standard [12] have been employing a time-stamping storing strategy but without any means of keeping
track of the modification between various sessions of writing. Most today’s DBMS have a built in
system of versioning data with or without redundancy, automatic or manual backup [3] controlled by
administrator and even am advanced support as a combination between all of them(Oceanstore, PASIS)
[3], but in most cases it is not enough, in terms of data history and dependency retrieval. The proposed
solution of data versioning is based on previous work [1] and aims towards informational history and
dependency, alteration control, trend analytics, without sacrificing(within acceptable levels) speed.

2. General overview over the solution

The paper presents a revised version of the previous work, taking into consideration the experience
gained in production environments. The proposed version is aimed toward solving issues regarding vari-
ous versions of the data(such as foreign key constraints). Data comes in various forms (internal/external
process point of view) therefore it has to be marked in certain ways (e.g. valuable, intermediary). Of
course, the versioning data producing process could be implemented at the application design level but
it breaks the concept of data versioning and from decision making process and software engineering
point of view it brings unwanted overhead. This issue is solved by the proposed solution in two flavors
an automatic and manual engine . The first involves employing a validation scheme (formal) and the
manual engine lets the decision at application level to decide if the information stored is considered a
checkpoint (e.g. valuable and intermediary). Another issues solved is the access of any version of data
in a transparent fashion, by employing a global version data stamping mechanism, see Fig.1

Fig. 1. Basic representation of the solution.

525 Cosmin Cioranu et al. / Procedia Computer Science 55 (2015) 523 – 528

3. Design issues of data versioning

Any versioning system, in our case a transparent Structured Query Language (SQL) approach, has
to take into considerations issues like performance, security, maintenance costs and hardware resource
consumption [3]. In terms of performance and security, the previous and the proposed solution is mainly
a rewriting of the queries sent to the DBMS. The driver or the database abstract layer intercepts them
and rewrite them to solve the above issues. The overhead added is reflected directly into the performance
and hardware resource consumption. To diminish the introduced impact, a number of improvements can
be added, like caches (at driver and application level) [9] but we will not approach them at this point.
Also the overall performance is affected by the cost of accessing data versions (e.g. at checkpoints), total
number of versions stored in the database and of the completeness of data [3]. From the security point
of view, being a query rewriter, the resulting request cannot circumvent the in-place rules (assuming
there are no flaws at the implementation level). However, a new security layer has to be considered in
terms of the consistency of the layered concept of the stored data, therefore a self-check of the produced
request has to be enabled and also and architectural permission rights has to be considered [8]. The
hardware consumption is closely related to the performance overhead introduced by the rewriter, issues
addressed in this paper as a flavor of the previous paper. Also we should keep in mind that the cost
per-byte and processing power, in later years, is becoming lower, for small to middle systems (e.g. small
on-line shop, small to middle organization, financing agency) this will not be an issue[4]. Maintenance
effort, is minimized, due to the fact that the proposed schema is built upon an existing architecture, in
our case a DBMS, which limits the problems related to the storage of data [1].

4. Approach

The general approach of the proposed solution in this paper and also in the previous one, in terms of
architecture, is the man-in-the middle or proxy see Fig.2, but with some additions. We also have kept
the general rule of flexibility and we started from a technology of Open Database Connectivity (ODBC).
In the left we see the generic or usual approach, every query, or request sent to the DBMS as it was
written, in the right, our solution, transforms it, by adding certain parameters to the general request to
permit the layering architecture shown in Fig.1.

D ata R equest: (no control requests)
Select, Update, Delete, Insert S tatement

D B MS (E g. MyS Q L)

D

ire
ct a

ccess to

D
B

M
S

 1. Request rewriter

2. Data analyzer:
- valuable version of data
- intermediary version of data

3. Request is pushed to local DBMS

Fig. 2. Generic approach.

4.1. SQL Prerequisites

The SQL implemented in most relational database systems offer a small range of statements aimed
toward data manipulation. Our solution is closely related to those statements, the select, update, insert
and delete structures. The implementation of the current solution, as mentioned before, is a rewriting

526 Cosmin Cioranu et al. / Procedia Computer Science 55 (2015) 523 – 528

mechanism [Table 1], the transformations are different than in the previous solution, aimed toward
performance, in an attempt to isolate and eliminate bottlenecks. As we could see we are not taking into
consideration the modification at schemata level.

The current approach does take into consideration the following:

• it is aimed at long-term database systems [10][5];
• it is meant as a transparent way to solve the issues related to versioning or the historic layering of
data;

• it is been built upon SQL (Structured Query Language) with no engine preference what so ever,
providing us the tools to be implemented in various engines starting from MSSQL, PostgreSQL,
Oracle or MySQL;

• it is been developed in such a way that limits the modification/cost required to be implemented
into an existing software architecture;

• it provides a multi-level data granularity [2] made possible by introducing the valuable vs. inter-
mediary versions of data) which may be useful in terms of security, data-mining and information
projection[3];

• it is been built to serve as a gateway between the request of data and the actual representation
of it, giving it the necessary ”space” to build an internal model, giving the necessary flexibility to
add modules or various extensions.

Table 1. Transformation requests.
Request/Operation Type Previous SQL Transformed Engine Proposed SQL Transformation Engine
Select Step 1: Creates the current layer Step1: Add transformation to the SQL

documents/items, D Statement using requested version (or last)
Step 2: Run original Statement, R - results
Step 3: R= R D

Delete Step 1: Run ”Select” statement using the Step1: Transform delete statement into
deletion condition as filtration update statement
Step 2: mark all elements from R to be Step2: Check local version and add
end of life in this layer conditions to the update statement
Step 3: create a new layer of data,
importing all data available from previous
layer

Insert Step1: create a new layer of data, using old Step1: add data regarding current version
data. Step2: analyze data completeness to
Step2: adds the current elements to the evaluate the type of version (valuable vs.
current layer intermediary)

Update Step1: Run ”Select” statement using the Step1: Transform statement into an insert
update condition statement
Step2: Run Delete statement using the Step2: invalidate previous statement by
update condition using update statements
Step3: Run Insert statement using the
update data

In order to achieve all of the above we had to develop tools and methods to meet the required
performance and compatibility to the existing systems. The solution was developed using a MySQL
DBMS, using InnoDB (must be able to use key constraints [9]) as storage engine, but the solution
proposed can be used on any DBMS which follows SQL as query language.

4.2. Algorithmic approach

As seen in Fig.1 and Table1 we have been taking into consideration only the (main) data manipulation
statements of the SQL language: select, update, insert and delete. The other statements that relates
mostly to the Data Definition Language (DDL) are passing through our proxy without modification,
therefore we do not take into account the alteration of the schemata, as we specified above [1]. In order
to achieve the database versioning first we need to meet certain perquisites in terms of tables to be built
in the host database, as follows:

527 Cosmin Cioranu et al. / Procedia Computer Science 55 (2015) 523 – 528

• Revision space, here we specify the revision descriptors;
• Revision space version, it stores the date and de revision version of the Revision Space, giving the
ability of the revision system to acquire and retrieve the information stored in a layering way;

• Revision Types, valuable and intermediary versions;
• Revision space that takes into account the global database version;
• Revision logger, which keeps tracks of all modifications made in the database. The Document
Space seen in the previous version was replace by this logger.

The actual implementation the solution presented, consists in four different algorithms that treats
each of the basic operation in a special manner, basically it rewrites the request sent to the DBMS
Server, a man-in-the-middle kind of approach Fig.2, right side. In the table Table2 we will present the
actual transformation of a query that it is sent to the targeted DBMS.

Table 2. SQL Statement Transformation(s).

Statement Type Statement Type SQL Statement
Select Basic select * from SomeTable where field1=value

Transformed select * from
(select d.*

from SomeTable d, Revisions r
where r.id=d.idRevision

and r.internalName=[RevisionName]
and(
([requestVersion]=-1

and d.rVIn¡=r.version
and r.version¡d.rVOut)

or
([requestVersion]!=-1

and d.rVIn¡=[requestVersion]
and [requestVersion]¡d.rVOut)

)
) rSrc field1=value

Delete Basic Delete from SameTable where field1=’value1’
Transformed a. update SameTable rDest set rDest.rVOut=0 where

field1=’value1’ and rDest.rVIn¡=[version] and
rDest.rVOut¿[version] and rDest.idRevision=[RevisionId]

b. update Revisions r set version=version+1 where r.id=[RevisionId]
c. insert RevisionVersions set idRevision=[RevisionId],

version=[version]
Insert Basic Insert Into SomeTable set field1=’value1’, field2=’value2’

Transformed a. update Revisions r set version=version+1 where r.id=[RevisionId]
b. insert into ProiectePCCA2013 set rVIn=[version[,

idRevision=[RevisionId], field1=value1, field2=value2
c. insert RevisionVersions set idRevision=[RevisionId],

version=[version]
Update Basic Update SomeTable set where field1=’value1’, field2=’value2’ where id=value

Transformed a. Create a temporary table with all rows to be update (using select)
b. Delete all fields using delete statement
c. Run the update statement open the temporary created table
d. Insert the rows from the temporary table into target table

As it can be seen there is considerably overhead but the real advantage is the manageability of the
resulting data and we gain the following:

• Transparency to the application level;
• Historic layering achieved;
• Security is inherited.

528 Cosmin Cioranu et al. / Procedia Computer Science 55 (2015) 523 – 528

5. Results and tests

The results shows that the version 2.0 of the transparent SQL approach Table2 is better in terms of
performance, we gained features like: history value, better offload of DBMS Resources by distributing it
across various storage areas. In the previous version all the queries had to go through a center registry.

Table 3. Results at 1000 repetitions.
Request Type Time, direct access to DBMS Time, access though our proposed solution
insert 0.7627 4.4032
select 0.545 1.9872
update 11.6997 12.9992
delete 0.8141 6.0321

As it can be seen, see Table3, the insert, select and delete operations are considerably slower then
the basic ones, but the update, which in our case, interests us are is only 9% slower. It can be considered
a good result taken into consideration the gains that offers such a schema in representing data at the
database level. We achieved by using all levels of data optimization in creation of table structures and
by indexes added to the core tables [9].

6. Conclusions and further developments

The presented solution has been used in the software solution that hosts one of Romanian R&D
proposal management system (UEFISCDI) for over five years and has reached his potential, but there
are a few enhancements that can be implemented:

• The need to use in place caches to retrieve the information on select operations;
• Better optimization to the rewriting algorithm.

References

[1] Cosmin Cioranu, Marius Cioca, Database Versioning, a Transparent SQL Approach, Journal of Mobile, Embedded
and Distributed Systems; vol. V, no. 1, 2013, ISSN 2067-4074.

[2] Filip F.G., A decision-making perspective for designing and building information systems, International Journal of
Computers Communications and Control, 7(2), 264-272, 2014.

[3] Ninging Zhu,Data versioning systems. Technical report, Stony Brook University.
[4] Craig A.N. Soules, Garth R. Goodson, John D. Strunk, Gregory R. Ganger, Metadata Efficiency in Versioning File

Systems, Proceedings of FAST 03: 2nd USENIX Conference on File and Storage Technologies, San Francisco, CA,
USA March; 2003.

[5] Edward Sciore, Versioning and Configuration Management in an Object-Oriented Data Model, VLDB JournaL3; p.
77-106, 1994.

[6] Michail D. Flouris, Clotho: Transparent Data Versioning at the Block I/O Level, Twelfth NASA Goddard Conference
on Mass Storage Systems and Technologies in cooperation with Twenty-First IEEE Conference on Mass Storage
Systems and Technologies; p. 315-329.

[7] Ana-Maria Suduc, Mihai Bizoi, Florin Gheorghe Filip,Usability in Scientic Databases, Computer Science Journal of
Moldova; vol. 20, no.2(59), 2012.

[8] L.I. Cioca, Marius Cioca,Using distributed programming in production system management, Transactions on Infor-
mation Science and Applications; No4(2), p. 303-308, 2007.

[9] Baron Schwartz, Peter Zaitsev, and Vadim Tkachenko, High Performance MySQL, Third Edition, Lecture Notes in
Computer Science Volume 1861; p. 1048-1062, 2000.

[10] Enrico Franconi, Fabio Grandi and Federica Mandreoli, A Semantic Approach for Schema Evolution and Versioning
in Object-Oriented Databases, Computational Logic - CL.

[11] Marius Cioca, Andrada-Iulia Ghete, Lucian-Ionel Cioca, Daniela Gifu, Machine Learning and Creative Methods Used
to Classify Customers in a CRM Systems, Applied Mechanics and Materials; vol. 371, 2012.

[12] CERIF 2008-1.3, Full Data Model: Model Introduction and Specification; http://www.eurocris.org/Uploads
/Web%20pages/CERIF-1.3/Specifications/CERIF1.3 FDM.pdf.

